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Abstract

We present a linear stability analysis of Horton±Rogers±Lapwood convection in an anisotropic porous medium
bounded by ®nite-property plates of in®nite horizontal extent. Critical values for the onset of convection are

obtained using a continuation method. These values are compared with experimental data. The e�ects of plate
di�usivity, plate di�usivity, plate thickness, and anisotropy in the di�usivity and permeability of the porous medium
on these critical values are explored. We ®nd that the predicted critical values from our stability analysis agree
favorably with available precision experimental measurements. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The ®eld of natural convection has received a great

deal of experimental and analytical attention in recent

years as scientists and engineers discover new systems

in which it plays a role. Speci®c areas include convec-

tion in the `mushy zone' during the solidi®cation of

alloys and ¯uid transport through soils. An overview

of these areas can be found in the literature [1,2].

The particular topic of a ¯uid-saturated porous med-

ium heated from below was ®rst studied by Horton

and Rogers [3] in 1945. Three years later, Lapwood [4]

independently wrote about natural convection in a

porous medium and whether or not convective currents

could be sustained. Since then, much theory has been

presented on natural convection in a ¯uid-saturated

porous medium enclosed by ideal horizontal bound-

aries. The term `ideal' in this case refers to a boundary

that is in®nitely conductive and has no thickness.

Experimentally, however, the properties of the bound-

aries themselves may a�ect the critical values (critical

wave number and Rayleigh number) of the ¯uid-satu-

rated porous medium. Riahi [5] has studied how con-

ducting boundaries can a�ect convection, but he

assumed that the boundaries had no thickness. In this

paper, however, we allow the boundaries to have a

®nite thickness as well as a ®nite conductivity. The

particular way the boundary conditions are applied

and maintained may also in¯uence the system. Those

e�ects, however, are beyond the scope of this paper.

Many experiments have been performed measuring

the heat transfer rate through a porous medium

bounded by non-ideal plates. These experiments were

mostly concerned with determining the heat transport

characteristics in the medium once the ¯uid was con-

vecting and paid little attention to the critical values.

Lister [6] mentions in his review paper that some of

the data found in the literature were rescaled to show

a common location for the onset of convection.

Rescaling to match theory may, in fact, invalidate the

data. If the theoretical model used is inappropriate for

the experimental setup under consideration, rescaling

will increase the error in the results. In the present
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Nomenclature

a horizontal wavenumber
c speci®c heat
ca acceleration coe�cient

cP speci®c heat at constant pressure
du,l upper, lower plate thickness
D vertical derivative operator, @/@z

D
�)

scaled di�usivity tensor of porous medium
Da Darcy number, Kv/H

2

~g gravity

H height of porous medium
h heat transfer coe�cient
|Ã, jÃ, kÃ unit vectors for x, y, z directions
j imaginary number,

�������ÿ1p
K scalar permeability

K
�)

permeability tensor of porous medium

K
�)

scaled permeability tensor of porous medium

k scalar conductivity

k
�)

conductivity tensor of porous medium
l, m component horizontal wavenumbers

P pressure
Pr Prandtl number, n/av
q characteristic values

q0 heat ¯ux
R Rayleigh number, gbDTH 3/avn
Ra Rayleigh±Darcy number, gbDTKvH/avn
S arbitrary constant

T temperature
DT temperature di�erence across porous medium
t time
~u velocity of ¯uid
u, v, w x, y, and z components of velocity
W vertical velocity perturbation amplitude.

Greek symbols

a scalar di�usivity
a
�)

di�usivity tensor of porous medium
b coe�cient of thermal expansion

dij Kronecker delta
Z ratio of directional di�usivities, ah/av
f porosity

lu,l ratio of conductivities, kv/ku,l
m dynamic viscosity
n kinematic viscosity
r density

r0 reference ¯uid density
y vertically-dependent amplitude of thermal perturbation
x ratio of directional permeabilities, Kh/Kv.

Subscripts
B bottom edge of bottom plate
b steady-state value

f properties of the ¯uid
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paper, we demonstrate that experiments using di�erent

horizontal boundaries may have di�erent critical values

for the onset of convection.

Analytical expressions for the critical values of con-

vection in an anisotropic porous medium were devel-

oped in a series of three papers. In the ®rst, Castinel

and Combarnous [7] extended the work of Horton±

Rogers and Lapwood to media with anisotropic per-

meability. In a continuation of that work, Epherre [8]

added anisotropy in the di�usivity of the porous med-

ium. Each of these assume that the medium is isotropic

in both horizontal directions. Finally, Kvernvold and

Tyvand [9] developed a theory for an anisotropic med-

ium whose principle axes of permeability and di�usiv-

ity align with one another but can nonetheless have

anisotropy in the horizontal plane.

Close, Symmons, and White [10] were able to obtain

experimental results closely matching ideal boundary

theory by using a porous medium saturated with a gas.

The necessity for other researchers to scale data to

match theoretical values for onset, however, calls into

question the accuracy of ideal boundary theory for ex-

periments. For this reason, a more accurate model of

experimentally realizable situations is necessary to bet-

ter understand the onset of convection in a porous

medium heated from below. This model should reduce

the discrepancies between theoretical and experimental

critical values. It will also determine the magnitude of

the error in assuming ideal plates when dealing with

experimental values and give estimates of when the

ideal boundary assumptions are valid. The goal of this

work is to present a linear stability analysis of

Horton±Rogers±Lapwood convection in an in®nite

horizontal domain that takes into account the e�ects

of the bounding plates as well as the anisotropy in the

porous medium. This model is then analyzed and the

results are compared to theoretical and experimental

works [7,8,11]. Finally, conclusions are drawn as to the

applicability of ideal plate theory to experiments based

on their bounding plate properties and the e�ects these

plates have on the stability of the no-motion state.

2. Analytical formulation

Fig. 1 shows the problem studied in this paper. A

porous medium of in®nite horizontal extent is sand-

wiched between two solid plates. A ¯uid completely

saturates the porous medium. In the ®gure, the entries

on the left side denote the temperatures at (from top

to bottom) the top of the upper plate, the interface

between the upper plate and the porous medium, the

interface between the porous medium and the lower

plate, and the bottom of the lower plate. The entries in

the middle give the functions of temperature for the

®ve distinct regions; the upper boundary, the upper

plate, the porous medium, the lower plate, and the

lower boundary. The entries on the right show the

height measurements at the top of the upper plate, the

upper plate-medium interface, the center of the med-

ium, the lower plate-medium interface, and the bottom

of the lower plate. q0 is the ¯ux entering the bottom of

h horizontal direction
l properties of the lower plate
m properties of the porous medium

p perturbation values
T top edge of top plate
u properties of the upper plate

v vertical direction.

Fig. 1. Schematic of Horton±Rogers±Lapwood convection

cell bounded by ®nite thickness plates of in®nite horizontal

extent.
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the lower plate, T1,u is the temperature of the ¯uid
¯owing past the upper boundary (cooling bath), and

T1,l is the temperature of the ¯uid ¯owing past the
lower boundary (heating bath). Note that T0 is not a
®xed quantity but will change depending on the

boundary temperatures (T1,u and T1,l) as well as the
heat transfer conditions at the boundaries.
Each of the plates is assumed homogeneous and iso-

tropic with conductivities ku and kl and di�usivities au
and al ®xed. They are impermeable and immobile. The
energy equation for the plates is:

@Tu,l

@ t
� au,lr2Tu,l �1�

The porous medium, on the other hand, is anisotropic
in conductivity (kh and kv), di�usivity (ah and av), and
permeability (Kh and Kv). Epherre's model [8]Ðthat

the medium is horizontally isotropicÐare used here.
Kvernvold and Tyvand's model [9]Ðthat the principle
axes of these properties are aligned with each otherÐis

also used. The second-order tensors describing these
properties are:

K
�)

m �
24 kh 0 0
0 kh 0
0 0 kv

35 �2�

a
�)

m �
24 ah 0 0
0 ah 0
0 0 av

35 � av

24 Z 0 0
0 Z 0
0 0 1

35 � avD
�) �3�

K
�) �

24Kh 0 0
0 Kh 0
0 0 Kv

35 � Kv

24 x 0 0
0 x 0
0 0 1

35 � KvK
�) �4�

where D
�)

and K
�)

are the di�usivity and permeability
tensors scaled by their respective vertical components

and

Z � ah

av

x � Kh

Kv

�6�

With these tensors in mind, the mass, momentum, and
energy equations used by Horton and Rogers [3] can
be rewritten by combining aspects of previous work
done by Castinel and Combarnous [7], Nield and

Bejan [12], and Kvernvold and Tyvand [9]. Castinel
and Combarnous assume that the permeability is ani-
sotropic, but keep the conductivity isotropic. Nield

and Bejan assume the porous medium is isotropic, but
use the more precise acceleration coe�cient (ca) term
with the momentum instead of the inverse porosity

(fÿ1). Kvernvold and Tyvand use anisotropic tensors
for both permeability and di�usivity but do not
include any velocity derivatives in the momentum

term. Combining the anisotropy with the acceleration
coe�cient yields:

f
@rf

@ t
� r�rf ~u� � 0 mass �7�

rfca

@ ~u

@ t
� mK

�)ÿ1 � ~u � rf ~gÿ rP momentum �8�

�rc�m
@T

@ t
� r � ��rcP�fT~u� � r � �k

�)
mrT � energy �9�

There are three assumptions that will simplify the
above equations. First is the Oberbeck±Boussinesq ap-
proximation [13,14], which states that the ¯uid density

is constant except where acted upon by a body force.
Next the di�usivity, speci®c heat, and density are
assumed constant except where the density modi®es
the action of a body force. Finally, the time derivative

in the momentum equation is neglected because of the
scale of ca. Nield and Bejan [12] argue that even the
largest values of ca yield decay times much smaller

than 1 s. The di�usion time, t=H 2/av, for a typical ex-
periment is on the order of 103 s, so the e�ects of tran-
sients die away quickly compared to the time scale of

the thermal relaxation. Shattuck et al. [15] also neg-
lected the acceleration term after determining the coef-
®cient on that term was several orders of magnitude

smaller than other terms for common experimental
values.
After premultiplying the terms of the momentum

equation by K
�)
/m and applying the assumptions listed

above, the resulting equations of mass, momentum,
and energy for the porous medium are:

r � ~u � 0 �10�

~u � r0�1ÿ b�Tÿ T0��K
�) � ~g
m
ÿ K
�) � rP

m
�11�

�rc�m
@T

@ t
� �rcP�~u � rT � r�k�)mrT � �12�

where b is the coe�cient of volumetric thermal expan-
sion.
The third equation has an important assumption

embedded in it. It is only valid if the porous matrix
and the saturating ¯uid are in local thermal equili-
brium. If the conductivities of the solid and the ¯uid

are vastly di�erent, this assumption may be false and
the equation may give inaccurate results.
There are six boundary conditions for this problem.

The ®rst two are at the extreme edge of the solid
plates. The most general condition is given at the
upper boundary of the upper plate as:
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@T

@z

����
z�H=2�du

�Biu
du

Tu�H=2� du� � Biu
du

T1,u �13�

where the Biot number Biu,l is de®ned as:

Biu,l � hdu,l

k
�14�

The lower edge can be modeled with a Biot condition
taking care to note the direction of the ¯ux as follows:

@Tl

@z

����
z�ÿH=2ÿdl

ÿBil
dl

Tl�ÿH=2ÿ dl� � ÿBil
dl

T1,l �15�

Setting the Bi number for each plate to di�erent values
can change the nature of the boundary conditions.

Many experiments report a constant boundary tem-
perature condition, which corresponds to Bi=1.
Other experiments use a constant ¯ux condition [16],

particularly when electrically heating the lower bound-
ary. This condition cannot be represented by the gen-
eral conditions above but rather by:

@Tu

@z

����
z�H=2�du

� cu
@Tl

@z

����
z�ÿH=2ÿdl

� cl

where cu,l are constants.
The interfaces between the porous medium and the

plates have two thermal boundary equations each. The
®rst is a requirement that the temperature is continu-
ous across the interface:

Tu�H=2� � T�H=2� Tl�ÿH=2� � T�ÿH=2� �16�

The second is that the heat ¯ux is continuous across
the interface:

ku
@Tu

@z

����
z�H=2
� kv

@T

@z

����
z�H=2

kl

@Tu

@z

����
z�ÿH=2

� kv

@T

@z

����
z�ÿH=2

�17�

Finally, there is an impermeability condition at the

interface that requires the vertical component of vel-
ocity at the interfaces to be zero:

w�H=2� � 0 w�ÿH=2� � 0 �18�

Performing linear stability analysis requires knowledge

of the conduction state about which we perturb the
solution. This solution assumes the ¯uid is stationary
in the porous medium. This gives an a priori steady-

state ¯uid velocity of:

~ub � ~0 �19�

Using Eq. (12), and the boundary conditions in Fig. 1,
the steady-state temperature pro®le for the porous

medium is:

Tb � T0 � DT

�
1

2
ÿ z

H

�
�20�

In the boundaries, the one-dimensional conduction
equation applies. Assuming perfect thermal contact
between the outer edges of the plates and the cooling

and heating baths (Biu,l=1), this gives a general sol-
ution for plate temperature of:

Tu,b � �zÿH=2�
du

�TT ÿ T0� � T0 �21�

Tl,b � ÿ�z�H=2�
dl

�TB ÿ T0 ÿ DT � � T0 � DT �22�

It is important to note that while DT, T0, and q0 are
not explicitly known, their steady state values can be
determined as functions of TT,B, Biu,l, and the thermal

properties of the plates and of the matrix. Speci®cally,
for perfect thermal contact between the plates and the
baths:

q0 � TB ÿ TT

dl

kl

� H

kv

� du

ku

DT � q0H
kv

T0 � TT � q0du

ku

�23�

The only remaining variable is the pressure. Using Eq.

(11) and the steady-state values found above, the press-
ure is given by:

Pb � ÿgr0z�
gr0bDTz

2
ÿ gr0bDTz

2

2H
� C1 �24�

where C1 is an arbitrary constant. Finally, taking the

pressure at the center of the porous medium to be P0,
the no-¯ow pressure pro®le is:

Pb � P0 ÿ gr0

�
z� bDT

2

�
z2

2
ÿ z

��
�25�

At this point, it is helpful to scale and nondimensiona-

lize the variables in the three main equations and the
three steady-state solutions. Below, the primed vari-
ables are those which have been scaled and the

unprimed are the original variables. The scales are:

x 0 i � x i

H
t 0 � t

�
av

H 2

�
u 0i � ui

�
H

av

�

P 0 � P

�
Kv

r0nav

�
T 0 � Tÿ T0

DT

The equations of mass, momentum, and energy in the
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new variables are:

r0 � ~u 0 � 0 mass �26�

~u 0 � ÿgHKv

avn
�1ÿ bDTT 0�K�) � k̂ÿK

�) � r 0P 0

momentum

�27�

s
@T 0

@ t 0
� ~u 0 � r 0T 0 � r 0 � �D�) � r 0T 0� energy �28�

where s=(rc )m/(rcP)f is the heat capacity ratio [12].
A linear stability analysis can now be performed on

the scaled and nondimensionalized variables by assum-
ing each variable is made up of a steady-state and a

perturbed component. For the sake of clarity, the
primes denoting scaled variables will be dropped
throughout the rest of the paper. As an example, the

temperature can be represented as:

T � Tp � Tb �29�

where Tp is the perturbation amplitude and Tb is the
steady-state value. Substituting these combinations
into the mass, momentum, and energy equations and

eliminating second-order terms yields:

r � ~up � 0 �30�

~up � RaTpK
�) � k̂ÿK

�) � rPp �31�

s
@Tp

@ t
ÿ wp � r � �D�) � rTp� �32�

where Ra is the Rayleigh±Darcy number:

Ra � R Da � gbDTH 3

avn
Kv

H 2
� gbDTHKv

avn
�33�

Expanding the divergence operation in Eq. (30) gives:

@up

@x
� @vp

@y
� @wp

@z
� 0 �34�

Taking the double curl of Eq. (31) to eliminate press-
ure terms, using the conservation of mass equation

above to eliminate up and vp terms, and extracting the
kÃ component yields: 
x
@ 2

@x 2
� x

@ 2

@y2
� @ 2

@z2

!
wp

� Rax

 
@ 2

@x 2
� @ 2

@y2

!
Tp �35�

Finally, expanding the divergence operators in (32)
produces:

s
@Tp

@ t
ÿ wp �

 
Z
@ 2

@x 2
� Z

@ 2

@y2
� @ 2

@z2

!
Tp �36�

Now the momentum and energy equations contain
only two unknown scalars, wp and Tp. The linearity of
these equations allows a separation of variables:

wp �W�z�E�x, y, t� �37�

Tp � y�z�E�x, y, t� �38�

where E(x, y, t )=exp( jlx+jmy+st ) with l and m
being horizontal wave numbers and s being the growth
rate.
Substituting these representations into the momen-

tum and energy equation, using D as the vertical de-
rivative operator, combining the horizontal
wavenumbers into an overall horizontal wavenumber

[12] a � ���������������
l2 �m2
p

, and dividing by E(x, y, t ) gives:

�ÿxa2 �D2�W�z� � ÿRaxa2y�z� �39�

ÿW�z� � �ÿZa2 �D2 ÿ ss�y�z� �40�

Eliminating W(z ) between the equations leaves:

�D2 ÿ xa2��D2 ÿ Za2 ÿ ss�y�z� � Raxa2y�z� �41�

Marginal stability occurs when the real part of the
growth rate s is zero. Given that, the characteristic
values for marginal stability which solve Eq. (41) are:

q1 �

��������������������������������������������������������������������������
a2
�
x� Z
2

�
�

�����������������������������������������
a4
�
xÿ Z
2

�2

�a2Rax
svuut �42�

q2 �

��������������������������������������������������������������������������
a2
�
x� Z
2

�
�

�����������������������������������������
a4
�
xÿ Z
2

�2

�a2Rax
svuut �43�

where

dW�z�
dz
� qW�z�

and the z-dependent terms of the separated tempera-

ture and velocity solutions can be written as:

y�z� � C1 cosh�q1z� � S1 sinh�q1z��

C2 cosh�q2z� � S2 sinh�q2z� �44�
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W�z� � C1w cosh�q1z� � S1w sinh�q1z��

C2w cosh�q2z� � S2w sinh�q2z� �45�

For the plates, perturbations in the plate-porous med-

ium temperature pro®le mean three-dimensional con-
duction in the plate is possible. The conduction
equation in the plates is therefore:

r2Tu,l � 1

au,l

@Tu,l

@ t
�46�

By separating the temperature into two variablesÐone

with horizontal dependence and one with verticalÐa
general solution can be formed:

yu�z� � E�x, y, t��C3 cosh�az� � S3 sinh�az�� �47�

yl�z� � E�x, y, t��C4 cosh�az� � S4 sinh�az�� �48�

where a is the overall horizontal wavenumber from
before. The E(x, y, t ) function models the horizontal
dependence of yu,l in order to satisfy temperature con-
tinuity on the porous medium-plate interfaces.

Finally, the boundary and matching conditions can
be written in terms of three variables; the temperature
perturbation of the porous medium y and the tempera-

ture perturbations of the plates yu,l. The eight bound-
ary equations require:

temperature continuity across the porous medium±
plate interfaces;

y�1=2� � yu�1=2� y�ÿ1=2� � yl�ÿ1=2� �49�

¯ux continuity though the porous medium±plate inter-
faces;

dy
dz

����
z�1=2
� 1

lu

dyu

dz

����
z�1=2

dy
dz

����
z�ÿ1=2

� 1

ll

dyl

dz

����
z�ÿ1=2

�50�

no vertical component of velocity at the porous med-
ium±plate interfaces;

W�1=2� � �D2 ÿ Za2�y�1=2� � 0

W�ÿ1=2� � �D2 ÿ Za2�y�ÿ1=2� � 0 �51�

and compliance with the Biot boundary conditions;

dyu

dz

����
z�1=2�du

�H

du

Biuyu�1=2� du� � 0 �52�

dyl

dz

����
z�ÿ1=2�dl

ÿH
dl

Bilyl�ÿ1=2ÿ dl� � 0

Note that the speci®c Biot conditions chosen for this

study are Biu,l=1. This allows for comparison with a
number of experiments in the literature.

The linearized equations of motion can be written
into a matrix equation

A ~C � ~0 �53�

where A is a matrix containing the hyperbolic terms of

the temperature solutions y, yu, and yl, and ~C is a col-
umn vector containing the coe�cients Ci and Si:

~C � �C1, S1, C2, S2, C3, S3, C4, S4�T �54�

There are two general cases for which Eq. (53) is true;

either the entries in ~C are all 0Ðmeaning no pertur-
bation amplitude and thus no convectionÐor the
determinant of A is 0. The ®rst case is the conduction
solution. The second case is the more interesting situ-

ation as it denotes the critical point where the conduc-
tion solution becomes unstable.
The critical values of the Rayleigh±Darcy number

and wave number can be found by obtaining the
values for which the determinant of A is 0 in ten-
dimensional parameter space and minimizing the

Rayleigh±Darcy number. In other words, the solution
will be found on the surface:

F�Ra, a, dl, du, ll, lu, Z, x, Bil, Biu� � 0 �55�

where

F � det�A� �56�

and the critical value will be determined by the mini-

mum Ra of those curves.

3. Results and discussion

The critical Ra and a values are found using a con-

tinuation method [17]. The program is given initial
values for Biu, Bil, du, dl, lu, and ll. Initial guesses for
Rac and ac are calculated using Epherre's equations for

ideal boundaries and horizontally isotropic plates [8]

Rac � p2
"�

Z
x

�1=2

�1
#2

�57�

ac � p�xZ�ÿ1=4 �58�

Once a critical point for this con®guration is found,
one of the ten parameters is changed and a new critical
value set found. This decreases computation time in

that the program is well adapted to working with
small changes in a single parameter.
The ®rst results of the program are used to test its
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accuracy vs other theory. Parameters closely matching
those for ideal plates are used and the results com-

pared with Epherre's equations. The parameters are:

Biu � Bil � 1 du � dl � 10ÿ3 lu � ll � 10ÿ4

Runs are made using x and Z values between 0.1 and
10.0. Fig. 2 shows the comparison between the calcu-

lated and theoretical values for Rac. Fig. 3 shows the
same comparison for the critical wave number. In both
cases, the calculated value matches almost exactly to

the ideal plate theory from Epherre.
The ®rst new results we present are for a porous

medium with isotropic permeability (x=1) but varying
di�usivity ratios (Z ). For simplicity, the boundary

plates are assumed to be identical to one another. Fig.
4 shows several families of Rac curves. Curves with
similar symbols have the same d values. Within each

plot, the right-most curve is for d=10ÿ3, the middle
for d=10ÿ1.5, and the left-most for d=1.0 where d is
the scaled thickness of the plates. The thermal bound-

ary condition on each plate is Bi=1, meaning the
temperature is held constant at the outer edge and
there is perfect thermal contact between the baths and
the plates.

This ®gure looks qualitatively like the ®gures pre-
sented by Metcalfe and Beringer [18] for Rayleigh±
BeÂ nard convection in bounded cryogenic experiments.

Convection in a porous medium has the same decrease
in stability as either the plate thickness increases or the
medium conductivity increases. Although the actual

numbers are di�erent, the shape of the curve is similar.
It is clear that the degree of di�usive anisotropy con-
tributes to a shift in critical Ra values. This follows

Epherre's conclusion that Rac is dependent on Z. A
porous medium with a higher horizontal di�usivity,
then, would tend to be able to withstand a greater tem-
perature gradient before convection occurs.

This ®gure also shows the in¯uence of the plate
thickness in determining the stability of the no-motion
state. If the medium is bounded by thick plates, the

onset of convection is likely to occur earlier than in a
medium bounded by thinner plates. The variation in

Fig. 2. Comparison of Epherre's theoretical value (solid line)

of Rac and computed value using `ideal' plates. The computed

values are for Z=10ÿ1 (w), Z=100 (q), and Z=101 (r).

Fig. 3. Comparison of Epherre's theoretical value (solid line)

of ac and computed value using `ideal' plates. The computed

values are for Z=10ÿ1 (w), Z=100 (q), and Z=101 (r).

Fig. 4. Rac for a porous medium with isotropic permeability

(x=1) bounded by plates of various thicknesses and di�usiv-

ities. Within each group, the left curve (t) has d=1.0, the

middle (q) has d=10ÿ1.5, and the right (r) has d=10ÿ3. The
di�usivity ratio is displayed in the ®gure. The solid line is

shown to connect the computed values and does not denote

theoretical data. Note that the horizontal axes of the four

plots are the same, but the vertical axes are di�erent.
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critical Ra with d occurs over a fairly wide band in l,
and must therefore be taken into account when

attempting to compare experiment with theory. Fig. 5

shows values for the critical wave numbers given the
same parameters as above. Again, each family of curve

has the same shape, but the average value is shifted up
or down depending on the value of Z. For the wave
number, however, a higher relative horizontal di�usiv-

ity in the medium causes a decrease in the critical
wavenumber. This means that whenever the critical Ra
is reached, the length scale of the ensuing convection

would be larger in media with higher horizontal di�u-
sivities.

The next parameter we explore is the permeability
ratio. Fig. 6 shows several families of Rac curves for

di�erent values of the permeability ratio (x ) while the
di�usivity is kept isotropic (Z=1). Again, the right-
most curve is for d=10ÿ3, the middle for d=10ÿ1.5,
and the left-most for d=1.0 with temperature held
®xed at the extreme boundaries. These curves appear

to be the same shape as those in Fig. 4. The notable
exception is the location of the curves relative to each
other. In this case, an increase in the horizontal com-

ponent of Km causes a decrease in Rac. This follows
Epherre's equations, since critical Ra is dependent on x
with a negative power.

Fig. 7 shows several families of curves for which Z/x
are equal. An upward-pointing triangle denotes a

curve where the horizontal components of x and Z are
ten times that of the vertical, a square indicates isotro-

pic values of di�usivity and permeability, and a down-
ward-pointing triangle denotes x and Z equal to 0.1.
There seem to be only ®ve curves, but in actuality

there are nine. The three that lose stability ®rst are for
very thick (d=1.0) plates. The next three are for

Fig. 6. Rac for a porous medium with isotropic di�usivity

(Z=1) bounded by plates of various thicknesses and conduc-

tivities. Within each group, the left curve (t) has d=1.0, the

middle (q) has d=10ÿ1.5, and the right (r) has d=10ÿ3. The
permeability ratio is displayed in the ®gure. The solid line is

shown to connect the computed values and does not denote

theoretical data. Note that the horizontal axes of the four

plots are the same, but the vertical axes are di�erent.

Fig. 7. Rac for a porous medium with Z/x=1. The line styles

denote: d=1.0 (±), d=10ÿ1.5 (Ð), d=10ÿ3 (±�). The symbols

are: x=Z=10ÿ1 (t), x=Z=1 (w), and x=Z=101 (r). The

solid line is shown to connect the computed values and does

not denote theoretical data.

Fig. 5. ac for a porous medium with isotropic permeability

(x=1) bounded by plates of various thicknesses and di�usiv-

ities. Within each group, the left curve (t) has d=1.0, the

middle (q) has d=10ÿ1.5, and the right (r) has d=10ÿ3. The
di�usivity ratio is displayed in the ®gure. The solid line is

shown to connect the computed values and does not denote

theoretical data. Note that the horizontal axes of the four

plots are the same, but the vertical axes are di�erent.
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d=10ÿ1.5 thick plates, and show that for this thickness

the individual values of x and Z are unimportantÐ

only their ratio matters. The most stable curves also
fall on top of each other, and are for a plate thickness

d=10ÿ3. Fig. 8 shows another set of nine curves, this
time with a constant Z/x ratio of 10ÿ0.5. Again, the

actual values of Z and x only a�ect the critical Ra
when the plates are very thick.

Fig. 9 shows several families of ac for di�erent x.
There curves again have the same shape as their
counterparts in Fig. 5. This follows from the theory

that ac is inversely proportional to both x and Z. Fig.
10 shows the ac curves for several con®gurations where
Zx are equal. Again, only the thickest of plates shows

a signi®cant di�erence between the ac values for equiv-
alent Zx groups. The notable exceptions are the curves
where Z=10 and x=0.1. These have a much higher-
valued asymptote than the others. Running the compu-

ter program through l=1012 failed to show any
decrease in ac beyond the value shown at l=104.
Although there is very little precision data in the lit-

erature that accurately report critical values, compari-
son with what is available is promising. Howle [11]
reports an experiment performed using a porous med-

ium whose properties are:

dl � 4:2 ll � 0:0025 x � 0:38

du � 0:7 lu � 0:25 Z � 1:52

Epherre's theory predicts a critical Rayleigh±Darcy
number of 22.5. Howle's measured values fell in the
range of Rac=1824. Our stability model gives a value

of Rac=18.62. Results were also obtained in the same
experiment with a di�erent medium

dl � 4:2 ll � 0:0025 x � 1:25

Fig. 9. ac for a porous medium with isotropic di�usivity

(Z=1) bounded by plates of various thickness and conduc-

tivity. Within each group, the left curve (t) has d=1.0, the

middle (q) has d=10ÿ1.5, and the right (r) has d=10ÿ3. The
permeability ratio is displayed in the ®gure. The solid line is

shown to connect the computed values and does not denote

theoretical data. Note that the horizontal axes of the four

plots are the same, but the vertical axes are di�erent.

Fig. 10. ac for a porous medium with Zx=1. The line styles

denote: d=1.0 (±), d=10ÿ1.5 (Ð), d=10ÿ3 (±�). The symbols

are: Z=10ÿ1, x=101 (t); Z=10ÿ0.5, x=100.5 (y); Z=1, x=1

(w); Z=100.5, x=10ÿ0.5 (u); and Z=101, x=10ÿ1 (r). The

solid line is shown to connect the computed values and does

not denote theoretical data.

Fig. 8. Rac for a porous medium with Z/x=10ÿ0.5. The line

styles denote: d=1.0 (±), d=10ÿ1.5 (Ð), d=10ÿ3 (±�). The

symbols are: Z=10ÿ1, x=10ÿ0.5 (t); Z=10ÿ0.3, x=100.2 (w);

and Z=100.5, x=101 (r). The solid line is shown to connect

the computed values and does not denote theoretical data.

M.R. Gustafson II, L.E. Howle / Int. J. Heat Mass Transfer 42 (1999) 3419±34303428



du � 0:7 lu � 0:25 Z � 1:277

Epherre's theory predicts Rac=39.1. Our new theory's
prediction of Rac=34.2 is much closer to Howle's
measured value of Rac=3224. These results show the

important role that the bounding plates play in modi-
fying the critical Rayleigh±Darcy number.

4. Conclusions

A systematic study of the critical values of an aniso-
tropic porous medium sandwiched between ®nite prop-
erty solid plates reveals the following:

1. The relative conductivity between the porous and
the boundary plates has a signi®cant impact on the
critical Rayleigh±Darcy number for convection. Far

from remaining at a stationary Ra=4p 2, severe
di�erences in properties between the medium and
the bounding surfaces can reduce the stability of the

conduction regime, in some cases by a factor of 10
or more. Because the assumption that the solid
matrix and the saturating ¯uid are in thermal equili-
brium breaks down when the ¯uid and the solid

have vastly di�erent conductivities, the equations
used for this work will not accurately portray such
a porous medium. Given that, it is di�cult to con-

struct a medium which has a conductivity exceeding
that of the metallic materials typically used for
bounding surfaces. For experiments using glass or

other transparent materials as boundariesÐfor visu-
alization purposesÐthe medium and the boundary
plates may have similar conductivities and the sys-

tem may therefore exhibit a lower critical tempera-
ture di�erence.

2. The relative conductivity between the porous med-
ium and the boundary plates can change the wave-

number of the convection pattern. The greater the
relative conductivity of the medium, the larger the
wavelength of the critical disturbance and thus the

larger the horizontal length scale of the convection
at onset.

3. The plate thickness is important in determining the

conductivity ratio (l ) at which substantial loss of
stability begins. Thicker plates tend to reduce the
conductivity ratio at which the value of the critical
Rayleigh±Darcy number begins to turn away from

ideal plate theory. This means that thicker plates
must be more conductive than thin plates to have
the same critical values. While the e�ects are asymp-

totic, they nonetheless show that experimentalists
need to consider both the material properties and
the physical dimension of the bounding plates when

comparing their critical values to theory.
4. The plate thickness is important in determining

where equal values of xZ (for ac) or x/Z (for Rac)
have di�erent stabilities. This follows from the data

summarized in Figs. 7, 8, and 10. We show that for
the thickest plates, the level of anisotropy in per-
meability and di�usivity in the porous medium

begin to work independently. In ideal plate theory,
a constant product xZ yields a constant critical wave
number and a constant ratio Z/x yields a constant

critical Ra. For thick plates, the individual values of
Z and x in¯uence the stability curve.

The analytical and numerical calculations performed in
this work have shown that the physical reality of the
boundary plates may play, in some instances, an im-
portant role in determining the stability of Horton±

Rogers±Lapwood convection. Given that, more
workÐespecially experimentalÐmust be done both to
verify these results and to investigate the e�ects of the

boundary plates on heat transport. For experiments
dealing with ¯uids bounded by metal plates, however,
the loss in stability caused by the plates themselves is

negligible. Only situations where relatively highly con-
ductive porous matrices are bounded by relatively insu-
lating plates or thick plates need to be carefully

examined.
We will continue the progress of this paper by con-

ducting experiments to compare the results with new
theory. We are working on this through the use of sha-

dowgraphic technology and a specialized porous med-
ium constructed to allow visualization [19]. The
relative thicknesses of the boundary materials can

easily be changed, as can the relative conductivities by
either changing the material in the bounding plates or
the ¯uid used in the porous medium.
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